Grammatical evolution for features of epileptic oscillations in clinical intracranial electroencephalograms
نویسندگان
چکیده
This paper presents grammatical evolution (GE) as an approach to select and combine features for detecting epileptic oscillations within clinical intracranial electroencephalogram (iEEG) recordings of patients with epilepsy. Clinical iEEG is used in preoperative evaluations of a patient who may have surgery to treat epileptic seizures. Literature suggests that pathological oscillations may indicate the region(s) of brain that cause epileptic seizures, which could be surgically removed for therapy. If this presumption is true, then the effectiveness of surgical treatment could depend on the effectiveness in pinpointing critically diseased brain, which in turn depends on the most accurate detection of pathological oscillations. Moreover, the accuracy of detecting pathological oscillations depends greatly on the selected feature(s) that must objectively distinguish epileptic events from average activity, a task that visual review is inevitably too subjective and insufficient to resolve. Consequently, this work suggests an automated algorithm that incorporates grammatical evolution (GE) to construct the most sufficient feature(s) to detect epileptic oscillations within the iEEG of a patient. We estimate the performance of GE relative to three alternative methods of selecting or combining features that distinguish an epileptic gamma (~65-95 Hz) oscillation from normal activity: forward sequential feature-selection, backward sequential feature-selection, and genetic programming. We demonstrate that a detector with a grammatically evolved feature exhibits a sensitivity and selectivity that is comparable to a previous detector with a genetically programmed feature, making GE a useful alternative to designing detectors.
منابع مشابه
طبقه بندی حمله صرعی در سیگنال EEG با استفاده از سیستم استنتاج عصبی- فازی تطابقی
Background & Aims: Epilepsy is a brain disorder in which nerve cells receive abnormal inputs. This disease can lead to abnormal behaviors, feelings and symptoms such as loss of consciousness, which is called the seizure. Identification and classification of the epileptic seizure events in electroencephalographic signal against free seizure intervals plays an important role in clinical investiga...
متن کاملReal-time Detection of Precursors to Epileptic Seizures: Non-Linear Analysis of System Dynamics
We propose a novel approach for detecting precursors to epileptic seizures in intracranial electroencephalograms (iEEG), which is based on the analysis of system dynamics. In the proposed scheme, the largest Lyapunov exponent of the discrete wavelet packet transform (DWPT) of the segmented EEG signals is considered as the discriminating features. Such features are processed by a support vector ...
متن کاملEpileptic seizure detection using Reservoir Computing
In this paper it is shown that Reservoir Computing can be successfully applied to perform real-time detection of epileptic seizures in Electroencephalograms (EEGs). Absence and tonic-clonic seizures are detected on intracranial EEG coming from rats. This resulted in an area under the Receiver Operating Characteristics (ROC) curve of more than 0.99 on the data that was used. For absences an aver...
متن کاملNonparametric Spectral Analysis with Applications to Seizure Characterization Using Eeg Time Series
Understanding the seizure initiation process and its propagation pattern(s) is a critical task in epilepsy research. Characteristics of the pre-seizure electroencephalograms (EEGs) such as oscillating powers and high-frequency activities are believed to be indicative of the seizure onset and spread patterns. In this article, we analyze epileptic EEG time series using nonparametric spectral esti...
متن کاملClassifying the Epilepsy Based on the Phase Space Sorted With the Radial Poincaré Sections in Electroencephalography
Background: Epilepsy is a brain disorder that changes the basin geometry of the oscillation of trajectories in the phase space. Nevertheless, recent studies on epilepsy often used the statistical characteristics of this space to diagnose epileptic seizures. Objectives: We evaluated changes caused by the seizures on the mentioned basin by focusing on phase space sorted by Poincaré sections. Ma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Expert systems with applications
دوره 38 8 شماره
صفحات -
تاریخ انتشار 2011